

RESILIENT SITE PLANNING AND FOUNDATIONS

JAMES WHEELER, GCCDS

JAMES WHEELER GULF COAST COMMUNITY DESIGN STUDIO

View of GCCDS work space

RESILIENT SITE PLANNING AND FOUNDATIONS

OUTLINE

- I. GENERAL SITE DESIGN FACTORS
- **II. RESILIENT SITE DESIGN**
- III. SOIL STRENGTH
- **IV. FOUNDATION TYPES**
- V. RESILIENT FOUNDATION DESIGN

I. GENERAL SITE DESIGN FACTORS

Hot-Humid

A hot-humid climate is defined as a region that receives more than 20 inches of annual precipitation and where one or both of the following occur:

- a 67 F or higher wet bulb temperature for 3,000 or more hours during the warmest six consecutive months of the year; or
- a 73 F or higher wet bulb temperature for 1,500 or more hours during the warmest six consecutive months of the year[†]

Earth Axis Arctic Circle Sun rays **Tropic of Cancer** Equator **Tropic of Capricorn** Antarctic Circle *THE BENEFITS OF DAYLIGHTING: KITCHENS, LIVING ROOMS, DINING ROOMS, FAMILY ROOMS ***USING OUTDOOR SPACES *ORIENTATION FOR SHADE: EAST/WEST**

***ORIENTATION FOR AIR FLOW: NORTH/SOUTH**

MORNING

SUMMER SOLSTICE

EVENING

SHADE/SUPPORT

USING/TRANFERING WIND LOADS

RESILIENT SITES: WATER & LANDSCAPE

- 1. DECREASE IMPERVIOUS SURFACES
- 2. HAVE A PROPER GRADING PLAN
- 3. HAVE A PROPER PLANTING STRATEGY
- 4. PART 2 AND 3 WORKING TOGETHER

1. DECREASE IMPERVIOUS SURFACES ON SITE

PERVIOUS PAVERS REDUCE HARD SURFACE %'s

HIGH

HHH

HHHH HHHH

ile il

SOIL TYPES PRESENT ON THE MS GULF COAST

2. PROPER GRADING PLAN

KEEP WATER FROM UNDER THE HOUSE

MOVE WATER TO WHERE IT SHOULD BE

3. PROPER PLANTING STRATEGY

Dactylifera Medico

these viriginicae

erovskia atriplicitolia

piraes x vanhoutter

EACH SITE IS DIFFERENT, PLAN ACCORDINGLY

EACH SITE IS DIFFERENT, PLAN ACCORDINGLY

4. GRADING AND PLANTING WORKING TOGETHER

C2 . A.S.

FILTER BEFORE ENTERING GROUNDWATER

PLANTS CREATE HABITAT FOR LOCAL WILDLIFE

Shade east and west windows, but prune lower branches to prevent blocking the view.

Plant shade trees over patios, driveways, and airconditioning units.

Plant on the west and northwest to provide mid-to-late afternoon shade in most locations.

AN

ENERGY EFFICIENCY INCREASE FOR HOUSING

PROPER SHADING CAN REDUCE ENERGY CONSUMPTION BY 25%- NATIONAL RENEWABLE ENERGY LABORATORY

THREE PROPERLY PLACED SHADE TREES CAN SAVE \$200 -\$300 ANNUALLY- U.S. DEPT. OF ENERGY

SHADED NEIGHBORHOODS ARE 3 TO 6 DEGREES COOLER THAN UNSHADED NEIGHBORHOODS.

BECAUSE COOL AIR SETTLES AT THE GROUND IT CAN BE UP TO 25 DEGREES COOLER IN THE SHADE THAN NEXT TO UNSHADED IMPERVIOUS BLACKTOP AND GROUND LEVEL.

ENERGY EFFICIENCY INCREASE FOR HOUSING

III. SOIL STRENGTH AND FOUNDATIONS

TEST SOILS TO DETERMINE BEARING CAPACITY

FOUNDATIONS AND RESILIENT CONSIDERATIONS

A ZONE

V ZONE

BELOW LOWEST

BASE FLOOD ELEVATION BELOW FLOOR LEVEL

FOUNDATION OPENINGS REDUCE HYDROSTATIC PRESSURE

FOUNDATION ALLOWS FREE FLOW OF MOVING WATER

BASE FLOOD ELEVATION

HORIZONTAL STRUCTURE

ELEVATED FOUNDATION REQUIREMENTS

PARKING

ACCESS **STORAGE** PARKING

FLOOD RESISTANT CONSTRUCTION

CONCRETE BLOCK CEMENT BOARD GLASS TREATED LUMBER MARINE PLYWOOD FOAM INSULATION METAL DOORS AND FRAMES **GYPSUM BOARD** MINERAL FIBER BOARD WOOD FIBER BOARD HARD BOARD NON-TREATED LUMBER **EXTERIOR GRADE PLYWOOD** FIBER INSULATION WOOD DOORS AND FRAMES

ACCEPTABLE

CONCRETE

NOT ACCEPTABLE

BUILDINGS BEFORE HURRICANE KATRINA

DIGITAL FLOOD INSURANCE RATE MAPS (DFIRM)

IMPLICATIONS IN COASTAL FLOOD ZONES

IMPLICATIONS IN COASTAL FLOOD ZONES

FOUNDATIONS: SLAB ON GRADE

RESILIENT FOUNDATIONS: STEM/CHAIN WALLS

*APPROPRIATE FOR A ZONES AND ELEVATIONS BELOW 4'

*INTERIOR MAY BE BACKFILLED AND A SLAB POURED ACROSS THE SURFACE

*IF LEFT UNFILLED, BUILDER SHOULD CONSULT LOCAL MUNICIPALITY ON THE SPACING AND SIZING OF VENTS REQUIRED BY LOCAL CODE.

RESILIENT FOUNDATIONS: STEM/CHAIN WALLS

RESILIENT FOUNDATIONS: CMU FOOTINGS

RESILIENT FOUNDATIONS: CMU FOOTINGS

*CMU PIERS REQUIRE LARGE AMOUNTS OF REINFORCEMENT TO RESIST LATERAL WIND AND FLOOD LOADS

*EACH PIER BEARS ON A CONTINUOUS CONCRETE FOOTING BELOW THE SOIL.

*HEIGHT SHOULD BE LIMITED TO AVOID FAILURE AND IS NOT RECOMMENDED FOR HIGH ELEVATIONS

RESILIENT FOUNDATIONS: CMU FOOTINGS

FLOOR PLAN

DEEP FOUNDATIONS- CONCRETE PIERS

*CAN BE ENGINEERED TO REACH HIGHEST ELEVATIONS

*CONCRETE GIVES THE GREATEST STRENGTH FOR ELEVATING IN FLOODPLANE

*PIERS FORM AN OPEN PLAN THAT IS LESS SUCCEPTABLE TO THE EFFECTS OF SCOUR.

*DRAWBACKS CAN BE AVAILABILITY OF CONTRACTORS ABLE TO EXECUTE ENGINEERING AND COST DIFFERENTIAL

DEEP FOUNDATIONS- CONCRETE PIERS

DEEP FOUNDATIONS- DRIVEN WOODEN PILES

*WOODEN PILES ARE EASILY NOTCHED TO RECEIVE JOISTS, NO CONCRETE IS NEEDED.

*RELY ON FRICTION WITH TO RESIST GRAVITY AND UPLIFT

*PILES FORM AN OPEN PLAN THAT IS LESS SUCCEPTABLE TO THE EFFECTS OF SCOUR.

*DRIVEN BY A PNEUMATIC OR HYDRAULIC HAMMER UNTIL DETECTED RESISTANCE INDICATES THEY HAVE REACHED AN ACCEPTABLE BEARING CAPACITY.

NOTE: EXTERIOR SHEATHING TO RUN FROM BOTTOM OF RIM JOIST TO TOP OF WALL PLATE; NAIL AS PER SPECS.

DEEP FOUNDATIONS- DRIVEN WOOD PILES

BRACING

BRACING

BRACING

SSTD 10-99: STANDARD FOR HURRICANE RESISTANT RESIDENTIAL CONSTRUCTION SOUTHERN BUILDING CODE CONGRESS INTERNATIONAL

ACSE 7-98: MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES AMERICAN SOCIETY OF CIVIL ENGINEERS

FEMA COASTAL CONSTRUCTION MANUAL

INTERNATIONAL BUILIDNG CODE - IBC 2003/2006
